首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251408篇
  免费   26518篇
  国内免费   15877篇
电工技术   12860篇
技术理论   9篇
综合类   22915篇
化学工业   28225篇
金属工艺   36250篇
机械仪表   20886篇
建筑科学   28021篇
矿业工程   10113篇
能源动力   10506篇
轻工业   11449篇
水利工程   7676篇
石油天然气   14193篇
武器工业   4709篇
无线电   15050篇
一般工业技术   26806篇
冶金工业   19625篇
原子能技术   4369篇
自动化技术   20141篇
  2024年   508篇
  2023年   3637篇
  2022年   6725篇
  2021年   7961篇
  2020年   8445篇
  2019年   6998篇
  2018年   6626篇
  2017年   8554篇
  2016年   9698篇
  2015年   10348篇
  2014年   15695篇
  2013年   16078篇
  2012年   18961篇
  2011年   20743篇
  2010年   15241篇
  2009年   15409篇
  2008年   13803篇
  2007年   17276篇
  2006年   15440篇
  2005年   12736篇
  2004年   10820篇
  2003年   8928篇
  2002年   7535篇
  2001年   6354篇
  2000年   5261篇
  1999年   4273篇
  1998年   3409篇
  1997年   3009篇
  1996年   2692篇
  1995年   2110篇
  1994年   1827篇
  1993年   1348篇
  1992年   1123篇
  1991年   813篇
  1990年   763篇
  1989年   601篇
  1988年   419篇
  1987年   243篇
  1986年   235篇
  1985年   178篇
  1984年   156篇
  1983年   124篇
  1982年   162篇
  1981年   90篇
  1980年   164篇
  1979年   55篇
  1978年   29篇
  1977年   23篇
  1959年   45篇
  1951年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A meso-scale jet flame model was established for the flame ports of domestic gas stoves. The influences of hydrogen addition ratio (β = 0%–25%) on the combustion limits were explored. The results show that with the increase of hydrogen addition ratio, the blow-off limit increases obviously, while the extinction limit decreases slightly, namely, the combustible range expands significantly. Quantitative analysis was carried out in terms of chemical effect and thermal effect. It was found that hydrogen addition will reduce O2 fraction in the pre-mixture for a constant equivalence ratio. Under near-extinction limit condition, since the flame is located at the nozzle exit, the external O2 cannot be entrained into or diffuse into the upstream of the flame, which leads to the decrease of reaction rate. However, for the near-blow-off cases, the external O2 can be entrained and diffuse into the flame, which compensates the difference of O2 content in the pre-mixture. Therefore, the combustion reaction is enhanced by hydrogen addition because more H radicals can be produced. In addition, as the flame is located closer to the tube with the increase of hydrogen addition ratio, heat transfer between flame and tube wall is augmented and the preheating of fresh mixture is strengthened by the inner tube wall. This heat recirculation effect becomes especially notable in low velocity cases. In conclusion, the extension of extinction limit by hydrogen addition is attributed to the thermal effect, while the increase of blow-off limit is mainly due to the intensification of chemical effect.  相似文献   
52.
为了使双鸭山矿区煤炭资源最大程度地被采掘,减少资源浪费,提高矿井效益,延长矿井服务年限及促进矿井安全生产,以双鸭山矿区3个缓倾斜中厚煤层综采工作面为工程背景,对切顶卸压无煤柱开采技术进行深入探索,经过实际的检验证明,在双鸭山矿区缓倾斜中厚煤层中,采用切顶卸压技术进行沿空留巷,技术可行,经济合理,工艺简单,成巷率高。  相似文献   
53.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
54.
Food safety is the primary goal for food and drink manufacturers. Cleaning and disinfection practices applied to the processing environment are vital to maintain this safety; yet, current approaches can incur costly downtime and the potential for microorganisms to grow and establish, if not effectively removed. For that reason, manufacturers are seeking nonthermal, online, and continuous disinfection processes to control the microbial levels within the processing environment. One such emerging technique, with great potential, is cold atmospheric pressure plasma (CAP). This review presents the latest advances and challenges associated with CAP-based technologies for the decontamination of surfaces and equipment found within the food-processing environment. It provides a detailed overview of the technology and a comprehensive analysis of the many CAP-based antimicrobial studies on food-contact surfaces and materials. As CAP is considered an emerging technique, many of the recent studies are still in the preliminary stages, with results obtained under widely different conditions. This lack of cohesive information and an inability to directly compare CAP systems has greatly impeded technological development. The review further explores the challenge of scaling CAP technology to meet industry needs, considering aspects such as regulatory constraints, environmental credentials, and cost of use. Finally, a discussion is presented on the future outlook for CAP technology in this area, identifying key challenges that must be addressed to promote industry uptake.  相似文献   
55.
《Ceramics International》2022,48(9):12800-12805
Perovskite solid solution materials, namely, 0.67BiFeO3-0.33BaTiO3, were synthesized by spark plasma sintering method. The effects of the spark plasma sintering temperature on phase purity, microstructure, and electric properties of the as-prepared materials were investigated. The materials could be referred as pseudocubic phases based on the X-ray diffraction patterns. The bulk density first increased and then decreased. The 880 °C-sintered-ceramics had the maximal density and a compact microstructure with grain size of 0.77 ± 0.34 μm. The dielectric constant as a function of temperature exhibited a broad peak. At the optimal spark-plasma-sintering temperature, enhanced ferroelectric properties were observed with a value of Pr ~ 21 μC/cm2. This investigation on the spark plasma sintering process confirms it as an efficient approach to prepare outstanding performance BiFeO3–BaTiO3 ceramics.  相似文献   
56.
《Ceramics International》2022,48(16):23510-23517
In the present work, microstructural refinement and mechanical response of Al2O3–ZrO2 eutectics fabricated by a pulse discharge plasma assisted melting (PDPAM) method were investigated. The solidified microstructure evolves from polygonal eutectic colonies into irregular cellular colonies with increasing the superheating temperature of the melt from 1820 °C to 1900 °C. The average eutectic spacing inside the colonies decreases from 1.80 ± 0.10 μm to 0.25 ± 0.06 μm, and the coarse inter-colonial structure is refined, which is attributed to the increase in undercooling temperature. High-temperature microstructural stability of Al2O3–ZrO2 eutectics is improved significantly as contrasted with the as-sintered ceramics. Besides, the load dependence of Vickers hardness for Al2O3–ZrO2 eutectics is investigated.  相似文献   
57.
黄惠兰  文翔  李刚  汤维 《太阳能学报》2022,43(2):373-379
以H型垂直轴风力机及其内含圆柱形实体为研究对象,对NACA0018翼型的五叶片H型垂直轴风力机的气动性能进行数值模拟和实验验证。分析8种不同直径的内含圆柱体,在内含实体截面积占风轮迎风面积之比分别为21.2%、50.0%和76.9%时,风力机风能利用率的峰值分别下降8.04%、20.7%及74.3%。结果表明:随着内含实体直径的增大,风能利用率的峰值逐渐减小,开始较为缓慢,达到一定值时快速下降。小直径内含实体主要影响叶片在下风区的转矩,对风能利用率的影响较小,而大直径内含实体还会影响叶片在上风区的转矩,其风能利用率迅速减小。对于内含固定直径的实体,比如在现有建筑物外侧安装风力机时,其风轮半径的选择需综合考虑风能利用率和风力机的建造成本两方面的因素。研究结果可为建筑物与垂直轴风力机进行有效结合以提高风能的利用提供参考。  相似文献   
58.
Municipal solid waste steam gasification and direct melting system is proposed in this study for H2 production and ash melting simultaneously. Part of the H2 generated in gasification is extracted for combustion with pure oxygen in the melting zone to provide the energy necessary for auto-thermal operation. A simulation model is developed with Aspen Plus to investigate the performance and optimum conditions of the system. For the feedstock with a lower heating value of 18.91 MJ/kg used in this study, 39.8% of the generated H2 needs to be extracted to maintain the heat balance of the system at the gasification temperature of 900 °C, melting temperature of 1400 °C, and S/M of 1. The net H2 yield is ~77.3 kg/t-MSW with a net cold gas efficiency of 49.1% under the same operating condition. An optimum operation condition for T (850–1000 °C) and S/M (0.6–1.0) is determined considering the balance between H2 production ability and the auto-thermal energy balance.  相似文献   
59.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
60.
Aqueous film-forming foams (AFFFs) are an important for fire extinguishing, and their key ingredient is fluorinated surfactant. In recent years, traditional long-chain fluorinated surfactants have been banned by most countries because of their persistence, bio-accumulation and toxicity. Therefore, increased attention has been paid to the research and development of short-chain fluorinated surfactants. As is well known, the introduction of hydrophilic or hydrophobic groups in a surfactant affects its surface activity, and therefore, the fire extinguishing performance of AFFFs. In this work, a series of short-chain fluorosurfactant-based AFFFs with different hydrophobic chain lengths were prepared. The physicochemical performance of mixed systems (fluorinated surfactant plus sodium hexanesulfonate), including surface activity, spreading ability, foam expansion, drainage time, and the fire extinguishing and burn-back performance of AFFFs were studied. The results show that the critical micelle concentration (CMC) and the surface tension (γCMC) at the CMC of mixed systems at 25°C are lower than 7.68 mmol/L and 16.51 mN/m, respectively. For mixed systems, the average spreading rate is more than 1.09 cm/s, the foam expansion is over 7.1, and the drainage time is greater than 3.28 min. The fire extinguishing time of AFFFs on fuels is less than 51 s while the burn-back time is more than 15.18 min. The results imply a potential application prospect of the short-chain fluorinated surfactants in AFFFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号